lunes, 30 de mayo de 2011

4.5 Radio de convergencia

En matemáticas, según el teorema de Cauchy-Hadamard, el radio de convergencia de una serie de la forma \sum_{n=0}^\infty a_n(x-x_0)^n, con a_n,x,x_0\in\mathbb{R}, viene dado por la expresión:

R = \frac{1}{\lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |}


EJEMPLO:

Radio de convergencia finito

La función 1 / (1 − x) en su desarrollo con centro 0, o sea, en series de potencia xx0 = x − 0 = x, tiene el siguiente aspecto:
\frac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+....
(para el cálculo de la serie vea serie de Taylor). Su radio de convergencia es r = 1. Eso significa que para calcular si tomo cualquier valor cuya distancia al x0 = 0 es menor que r = 1, por ejemplo el x = 0.25, entonces al remplazarlo en la serie el resultado de calcular la serie será el mismo que remplazarlo en la función, de hecho
\sum_{n=0}^\infty 0.25^n=1+0.25+0.25^2+0.25^3+...=\frac{4}{3}.
(la cuenta se puede hacer por serie de potencia). Y por otro lado
\frac{1}{1-0.25}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}.
Pero si tomamos un elemento fuera del radio de convergencia, por ejemplo el x = 2, los más probable es que al remplazarlo en la serie, ésta diverja (por eso el nombre de radio de convergencia). Efectivamente:
\sum_{n=0}^\infty 2^n=1+2+2^2+2^3+...=\infty.


Wikipedia, la Enciclopedia libre.

viernes, 27 de mayo de 2011

evaluacion 4.6

Por medio de la presente informo que el equipo obtuvo el 100%
Atentamente
Ing.Enrique Marquez.

4.5 Serie de Taylor

Fórmula de Taylor
Sea f(x) una función definida en un intervalo que contiene al punto a, con derivada de todos los órdenes.
El polinomio de primer grado p1(x) = f(a) + f ' (a) (x-a) tiene el mismo valor que f(x) en el punto x=a y también, como se comprueba fácilmente, la misma derivada que f(x) en este punto. Su gráfica es una recta tangente a la gráfica de f(x) en el punto a.
Es posible elegir un polinomio de segundo grado, p2(x) = f(a) + f ' (a) (x-a) + ½ f ' ' (a) (x-a)2, tal que en el punto x=a tenga el mismo valor que f(x) y valores también iguales para su primera y segunda derivadas. Su gráfica en el punto a se acercará a la de f(x) más que la anterior. Es natural esperar que si construimos un polinomio que en x=a tenga las mismas n primeras derivadas que f(x) en el mismo punto, este polinomio se aproximará más a f(x) en los puntos x próximos a a. Así obtenemos la siguiente igualdad aproximada, que es la fórmula de Taylor:
f(x) ≈ f(a) + f '(a) (x-a) + (1/2!) f ' '(a) (x-a)2 + ...... + (1/n!) f (n)(a) (x-a) n
El resto tiene la peculiaridad de que la derivada que en él aparece debe calcularse en cada caso, no en el punto a, sino en un punto c convenientemente elegido, desconocido, pero interior al intervalo de extremos a y x.
La demostración de la igualdad anterior es bastante engorrosa, aunque sencilla en esencia.
Las leyes naturales pueden expresarse, por regla general, con buena aproximación por funciones derivables un número arbitrario de veces, y por ello pueden ser aproximadas por polinomios cuyo grado viene determinado por la precisión deseada.
La fórmula de Taylor, que abre el camino para la mayoría de los cálculos en el análisis aplicado, es muy importante desde el punto de vista práctico.
La idea de aproximar una función mediante polinomios o de representarla como suma de un número finito de funciones más sencillas alcanzó un gran desarrollo en el análisis, donde constituye ahora una rama independiente: la teoría de la aproximación de funciones.
En las siguientes escenas podemos observar cómo la gráfica de las funciones se va "tapando" con la gráfica del polinomio de Taylor al aumentar el grado del polinomio. Para un valor de x calculamos la diferencia entre el valor real y el valor del polinomio correspondiente. Al aumentar el grado del polinomio esa diferencia es cada vez menor. Hemos calculado los polinomios de Taylor para a=0.
1.- Aproximación de la función y = sen (x)



La función p(x)=a0+a1x+a2x2+..........+anxn, en la que los coeficientes ak son constantes, se llama polinomio de grado n. En particular y=ax+b es un polinomio de primer grado e y=ax2+bx+c es un polinomio de segundo grado. Los polinomios pueden considerarse las funciones más sencillas de todas. Para calcular su valor para una x dada, necesitamos emplear únicamente las operaciones de adición, sustracción y multiplicación; ni siquiera la división es necesaria. Los polinomios son funciones continuas para todo x y tienen derivadas de cualquier orden. Además la derivada de un polinomio es también un polinomio de grado inferior en una unidad, y las derivadas de orden n+1 y superiores de un polinomio de grado n son nulas.
Si a los polinomios añadimos las funciones de la forma y=p(x)/q(x) (cociente de polinomios, para cuyo cálculo necesitamos también de la división), las funciones raíz cuadrada de x y raíz cúbica de x, y finalmente, las combinaciones aritméticas de los tipos anteriores, obtenemos esencialmente las funciones cuyos valores pueden calcularse por métodos aprendidos en el bachillerato.
A este nivel se tienen nociones de algunas otras funciones tales como log(x), sen(x), ex, ..., pero, aunque se estudian sus propiedades más importantes, no se da una respuesta a las preguntas: ¿Cómo calcularlas? ¿Qué clase de operaciones, por ejemplo, es necesario realizar sobre la x para obtener log(x) o sen(x)?. La respuesta a estas preguntas la proporcionan los métodos desarrollados por el análisis matemático. Examinemos uno de estos métodos.



Fuente: http://recursostic.educacion.es/descartes/web/materiales_didacticos/Desarrollo_serie_taylor/Desarrollo_en_serie_de_taylor.htm

miércoles, 25 de mayo de 2011

4.6 Representacion de funciones por serie Taylor


En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:

sin(x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13.


La función exponencial (en azul), y la suma de los primeros n+1 términos de su serie de Taylor en torno a cero (en rojo).
 f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}
Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
Si a = 0, a la serie se le llama serie de Maclaurin.
Esta representación tiene tres ventajas importantes:
  • La derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales.
  • Se puede utilizar para calcular valores aproximados de la función.
  • Es posible demostrar que, si es viable la transformación de una función a una serie de Taylor, es la óptima aproximación posible.
Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo f(x) = exp(−1/x²) se puede desarrollar como serie de Laurent.



Wikipedia, la enciclopedia libre.

lunes, 23 de mayo de 2011

Area bajo la grafica de una funcion

En matematica, la integracion de una funcion no negativa, en el caso más simple, puede ser mirada como el área bajo la gráfica de una curva y el eje x. La Integral de Lebesgue es una construcción matemática que extiende el concepto de integración a una clase mucho más amplia de funciones, así como extiende los posibles dominios en las cuales estas integrales pueden ser definidas. Hace mucho que se sabe que para funciones no negativas con una curva suficientemente suave (como una funcion continua en intervalos cerrados) el área bajo la curva podía ser definida como la integral y calculada usando técnicas de aproximación de la región a través de rectángulos o polígonos. De todas maneras, como se necesitaba considerar funciones más irregulares (por ejemplo, como resultado de los limitados procesos del Cálculo o de la Teoría de Probabilidades), se hizo evidente que una aproximación más cuidadosa era necesaria para definir una integral que se ajustara a dichos problemas.
La integral de Lebesgue tiene un importante rol en el Análisis Real, y en muchas otras ramas de la Matemática. Su nombre es en honor a su creador, Henri Lebesgue (1875-1941).

A continuacion presentamos 2 videos donde se muestra el como obtener el Area bajo la grafica de una funcion por medio de las sumas de Riemann

miércoles, 18 de mayo de 2011